Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Biomolecules ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38672434

RESUMO

The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/antagonistas & inibidores , Animais , Proteína ORAI1/metabolismo , Cálcio/metabolismo
2.
Eur J Pharmacol ; 971: 176515, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547958

RESUMO

Orai1 channel capacity to control store-operated Ca2+ entry (SOCE) and B-cell functions is poorly understood and more specifically in B-cell cancers, including human lymphoma and leukemia. As compared to normal B-cells, Orai1 is overexpressed in B-chronic lymphocytic leukemia (B-CLL) and contributes in resting B-CLL to mediate an elevated basal Ca2+ level through a constitutive Ca2+ entry, and in BCR-activated B-cell to regulate the Ca2+ signaling response. Such observations were confirmed in human B-cell lymphoma and leukemia lines, including RAMOS, JOK-1, MEC-1 and JVM-3 cells. Next, the use of pharmacological Orai1 inhibitors (GSK-7975 A and Synta66) blocks constitutive Ca2+ entry and in turn affects B-cell cancer (primary and cell lines) survival and migration, controls cell cycle, and induces apoptosis through a mitochondrial and caspase-3 independent pathway. Finally, the added value of Orai1 inhibitors in combination with B-CLL drugs (ibrutinib, idelalisib, rituximab, and venetoclax) on B-CLL survival was tested, showing an additive/synergistic effect including in the B-cell cancer lines. To conclude, this study highlights the pathophysiological role of the Ca2+ channel Orai1 in B-cell cancers, and pave the way for the use of ORAI1 modulators as a plausible therapeutic strategy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Sinalização do Cálcio , Sobrevivência Celular , Linfócitos B/metabolismo , Linhagem Celular , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Molécula 1 de Interação Estromal/metabolismo
3.
Biochem Pharmacol ; 222: 116050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354960

RESUMO

The side effects of high-dose dexamethasone in anti-infection include increased ROS production and immune cell apoptosis. Dexamethasone effectively activates serum/glucocorticoid-regulated kinase 1 (SGK1), which upregulates various ion channels by activating store-operated calcium entry (SOCE), leading to Ca2+ oscillations. PIEZO1 plays a crucial role in macrophages' immune activity and function, but whether dexamethasone can regulate PIEZO1 by enhancing SOCE via SGK1 activation remains unclear. The effects of dexamethasone were assessed in a mouse model of sepsis, and primary BMDMs and the RAW264.7 were treated with overexpression plasmids, siRNAs, or specific activators or inhibitors to examine the relationships between SGK1, SOCE, and PIEZO1. The functional and phenotypic changes of mouse and macrophage models were detected. The results indicate that high-dose dexamethasone upregulated SGK1 by activating the macrophage glucocorticoid receptor, which enhanced SOCE and subsequently activated PIEZO1. Activation of PIEZO1 resulted in Ca2+ influx and cytoskeletal remodelling. The increase in intracellular Ca2+ mediated by PIEZO1 further increased the activation of SGK1 and ORAI1/STIM1, leading to intracellular Ca2+ peaks. In the context of inflammation, activation of PIEZO1 suppressed the activation of TLR4/NFκB p65 in macrophages. In RAW264.7 cells, PIEZO1 continuous activation inhibited the change in mitochondrial membrane potential, accelerated ROS accumulation, and induced autophagic damage and cell apoptosis in the late stage. CaMK2α was identified as a downstream mediator of TLR4 and PIEZO1, facilitating high-dose dexamethasone-induced macrophage immunosuppression and apoptosis. PIEZO1 is a new glucocorticoid target to regulate macrophage function and activity. This study provides a theoretical basis for the rational use of dexamethasone.


Assuntos
Glucocorticoides , Proteínas Serina-Treonina Quinases , Humanos , Glucocorticoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 4 Toll-Like/metabolismo , Macrófagos/metabolismo , Apoptose , Inflamação , Dexametasona/farmacologia , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais Iônicos/genética
4.
Mol Ther ; 32(3): 646-662, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291755

RESUMO

The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.


Assuntos
Adenilil Ciclases , Infarto do Miocárdio , Humanos , Ratos , Animais , Regulação para Cima , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Sinalização do Cálcio , Infarto do Miocárdio/genética , Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
5.
Biochem Pharmacol ; 219: 115955, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040093

RESUMO

In non-excitable cells, Orai proteins represent the main channel for Store-Operated Calcium Entry (SOCE), and also mediate various store-independent Calcium Entry (SICE) pathways. Deregulation of these pathways contribute to increased tumor cell proliferation, migration, metastasis, and angiogenesis. Among Orais, Orai1 is an attractive therapeutic target explaining the development of specific modulators. Therapeutic trials using Orai1 channel inhibitors have been evaluated for treating diverse diseases such as psoriasis and acute pancreatitis, and emerging data suggest that Orai1 channel modulators may be beneficial for cancer treatment. This review discusses herein the importance of Orai1 channel modulators as potential therapeutic tools and the added value of these modulators for treating cancer.


Assuntos
Neoplasias , Pancreatite , Humanos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Doença Aguda , Neoplasias/tratamento farmacológico , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
6.
Cell Calcium ; 117: 102834, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006628

RESUMO

Many physiological functions, such as cell differentiation, proliferation, muscle contraction, neurotransmission and fertilisation, are regulated by changes of Ca2+ levels. The major Ca2+ store in cells is the endoplasmic reticulum (ER). Certain cellular processes induce ER store depletion, e.g. by activating IP3 receptors, that in turn induces a store refilling process known as store-operated calcium entry (SOCE). This refilling process entails protein-protein interactions between Ca2+ sensing stromal interaction molecules (STIM) in the ER membrane and Orai proteins in the plasma membrane. Fully assembled STIM/Orai complexes then form highly selective Ca2+ channels called Ca2+ release-activated Ca2+ Channels (CRAC) through which Ca2+ ions flow into the cytosol and subsequently are pumped into the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Abnormal SOCE has been associated with numerous human diseases and cancers, and therefore key players STIM and Orai have attracted significant therapeutic interest. Several potent experimental and clinical candidate compounds have been developed and have helped to study SOCE in various cell types. We have synthesized multiple novel small-molecule probes based on the known SOCE inhibitor GSK-7975A. Here we present GSK-7975A derivatives, which feature photo-caging, photo-crosslinking, biotin and clickable moieties, and also contain deuterium labels. Evaluation of these GSK-7975A probes using a fluorometric imaging plate reader (FLIPR)-Tetra-based Ca2+ imaging assay showed that most synthetic modifications did not have a detrimental impact on the SOCE inhibitory activity. The photo-caged GSK-7975A was also used in patch-clamp electrophysiology experiments. In summary, we have developed a number of active, GSK-7975A-based molecular probes that have interesting properties and therefore are useful experimental tools to study SOCE in various cells and settings.


Assuntos
Benzamidas , Sinalização do Cálcio , Cálcio , Pirazóis , Humanos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais de Cálcio/metabolismo , Proteína ORAI1/metabolismo
7.
Cell Rep ; 42(12): 113540, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060449

RESUMO

Store-operated Ca2+ entry (SOCE) mediated by stromal interacting molecule (STIM)-gated ORAI channels at endoplasmic reticulum (ER) and plasma membrane (PM) contact sites maintains adequate levels of Ca2+ within the ER lumen during Ca2+ signaling. Disruption of ER Ca2+ homeostasis activates the unfolded protein response (UPR) to restore proteostasis. Here, we report that the UPR transducer inositol-requiring enzyme 1 (IRE1) interacts with STIM1, promotes ER-PM contact sites, and enhances SOCE. IRE1 deficiency reduces T cell activation and human myoblast differentiation. In turn, STIM1 deficiency reduces IRE1 signaling after store depletion. Using a CaMPARI2-based Ca2+ genome-wide screen, we identify CAMKG2 and slc105a as SOCE enhancers during ER stress. Our findings unveil a direct crosstalk between SOCE and UPR via IRE1, acting as key regulator of ER Ca2+ and proteostasis in T cells and muscles. Under ER stress, this IRE1-STIM1 axis boosts SOCE to preserve immune cell functions, a pathway that could be targeted for cancer immunotherapy.


Assuntos
Sinalização do Cálcio , Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Molécula 1 de Interação Estromal/metabolismo
8.
Sci Rep ; 13(1): 19471, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945647

RESUMO

Orai1 is the pore-forming subunit of the Ca2+-release activated Ca2+ channels that mediate store-operated Ca2+ entry (SOCE) in excitable and non-excitable cells. Two Orai1 forms have been identified in mammalian cells, the full-length variant Orai1α, and the short form Orai1ß, lacking the N-terminal 63 amino acids. Stem cells were isolated from non-tumoral breast epithelial cells of the MCF10A cell line, and the most representative ER+ , HER2 or triple negative breast cancer cell lines MCF7, SKBR3 and MDA-MB-231, respectively. Orai and TRPC family members expression was detected by RT-PCR and Western blotting. Changes in cytosolic Ca2+ concentration were analyzed by confocal microscopy using Fluo 4 and the spheroid-forming ability and self-renewal was estimated in culture plates coated with pHEMA using a cell imaging system. Here, we have characterized the expression of Orai family members and several TRPC channels at the transcript level in breast stem cells (BSC) derived from the non-tumoral breast epithelial cell line MCF10A and breast cancer stem cells (BCSC) derived from the well-known estrogen receptor positive (ER+), HER2 and triple negative cell lines MCF7, SKBR3 and MDA-MB-231, respectively. Furthermore, we have evaluated the mammosphere formation efficiency and self-renewal of the BSC and BCSC. Next, through a combination of Orai1 knockdown by iRNA and the use of MDA-MB-231 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1ß, we show that Orai1 is essential for mammosphere formation and self-renewal efficiency in BCSC derived from triple negative and HER2 subtypes cell cultures, while this channel has a negligible effect in BCSC derived from ER+ cells as well as in non-tumoral BSC. Both, Orai1α, and Orai1ß support SOCE in MDA-MB-231-derived BCSC with similar efficiency, as well as COX activation and mammosphere formation. These findings provide evidence of the functional role of Orai1α and Orai1ß in spheroid forming efficiency and self-renewal in breast cancer stem cells.


Assuntos
Cálcio , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio da Dieta/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Mamíferos/metabolismo
9.
Cell Calcium ; 116: 102802, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757535

RESUMO

Chronic pancreatitis (CP) is a complex inflammatory disorder characterized by progressive fibrosis, leading to pancreatic dysfunction, reduced quality of life and an elevated pancreatic cancer risk. Current therapeutic options for CP are restricted to symptomatic treatment. Using ex vivo and in vivo preclinical disease models, Szabó et al. now explored for the first time the involvement of Store-operated Ca2+ entry (SOCE) in the progression of CP and propose that a selective pharmacological inhibition of the SOCE signaling component Orai1 might serve as specific treatment option for CP[1,2].


Assuntos
Cálcio , Pancreatite Crônica , Humanos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Qualidade de Vida , Pancreatite Crônica/tratamento farmacológico , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
10.
J Exp Clin Cancer Res ; 42(1): 195, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542345

RESUMO

BACKGROUND: Bone metastasis is a principal cause of mortality in patients with prostate cancer (PCa). Increasing evidence indicates that high expression of stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE) significantly activates the calcium (Ca2+) signaling pathway and is involved in multiple steps of bone metastasis in PCa. However, the regulatory mechanism and target therapy of STIM1 is poorly defined. METHODS: Liquid chromatography-mass spectrometry analysis was performed to identify tetraspanin 18 (TSPAN18) as a binding protein of STIM1. Co-IP assay was carried out to explore the mechanism by which TSPAN18 inhibits STIM1 degradation. The biological function of TSPAN18 in bone metastasis of PCa was further investigated in vitro and in vivo models. RESULT: We identified that STIM1 directly interacted with TSPAN18, and TSPAN18 competitively inhibited E3 ligase tripartite motif containing 32 (TRIM32)-mediated STIM1 ubiquitination and degradation, leading to increasing STIM1 protein stability. Furthermore, TSPAN18 significantly stimulated Ca2+ influx in an STIM1-dependent manner, and then markedly accelerated PCa cells migration and invasion in vitro and bone metastasis in vivo. Clinically, overexpression of TSPAN18 was positively associated with STIM1 protein expression, bone metastasis and poor prognosis in PCa. CONCLUSION: Taken together, this work discovers a novel STIM1 regulative mechanism that TSPAN18 protects STIM1 from TRIM32-mediated ubiquitination, and enhances bone metastasis of PCa by activating the STIM1-Ca2+ signaling axis, suggesting that TSPAN18 may be an attractive therapeutic target for blocking bone metastasis in PCa.


Assuntos
Cálcio , Neoplasias da Próstata , Masculino , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Neoplasias da Próstata/genética , Ubiquitinação , Sinalização do Cálcio , Proteína ORAI1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
11.
PLoS One ; 18(5): e0264596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167218

RESUMO

The calcium-selective ion channel Orai1 has a complex role in bone homeostasis, with defects in both bone production and resorption detected in Orai1 germline knock-out mice. To determine whether Orai1 has a direct, cell-intrinsic role in osteoblast differentiation and function, we bred Orai1 flox/flox (Orai1fl/fl) mice with Runx2-cre mice to eliminate its expression in osteoprogenitor cells. Interestingly, Orai1 was expressed in a mosaic pattern in Orai1fl/fl-Runx2-cre bone. Specifically, antibody labeling for Orai1 in vertebral sections was uniform in wild type animals, but patchy regions in Orai1fl/fl-Runx2-cre bone revealed Orai1 loss while in other areas expression persisted. Nevertheless, by micro-CT, bones from Orai1fl/fl-Runx2-cre mice showed reduced bone mass overall, with impaired bone formation identified by dynamic histomorphometry. Cortical surfaces of Orai1fl/fl-Runx2-cre vertebrae however exhibited patchy defects. In cell culture, Orai1-negative osteoblasts showed profound reductions in store-operated Ca2+ entry, exhibited greatly decreased alkaline phosphatase activity, and had markedly impaired substrate mineralization. We conclude that defective bone formation observed in the absence of Orai1 reflects an intrinsic role for Orai1 in differentiating osteoblasts.


Assuntos
Canais de Cálcio , Subunidade alfa 1 de Fator de Ligação ao Core , Osteoblastos , Animais , Camundongos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos Knockout , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Osteoblastos/metabolismo
12.
Nat Commun ; 14(1): 1286, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890174

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Animais , Humanos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Mamíferos/metabolismo , Proteínas de Neoplasias/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 43(5): e151-e170, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924231

RESUMO

BACKGROUND: Altered intracellular Ca2+ homeostasis in neonatal platelets has been previously reported. This study aims to examine the changes in the Ca2+ entry through the store-operated calcium entry (SOCE) mechanism in neonatal platelets. METHODS: Human platelets from either control women, mothers, and neonates were isolated and, following, were fixed after being treated as required. Platelet samples were analyzed by Western blotting, qRT-PCR, and MALDITOF/TOF. Ca2+ homeostasis was also determined. Culture cells were used as surrogated of platelets to overexpress the proteins of interest to reproduce the alterations observed in platelets. RESULTS: Altered TG (thapsigargin)-evoked SOCE, alternative molecular weight form of STIM1 (stromal interaction molecule 1; s-STIM1 [short STIM1 isoform (478 aa)], around 60 kDa) and overexpression of SARAF (SOCE-associated regulatory factor) were found in neonatal platelets as compared to maternal and control women platelets. s-STIM1 may result due to CAPN1 (calpain1)-dependent processing, as confirmed in platelets and MEG01 cells by using calpeptin and overexpressing CAPN1, respectively. In HEK293 (STIM1 and STIM2 [stromal interaction molecule 2] double knockout) cells transfected either with c-STIM1 (canonical STIM1 [685 aa]), s-STIM1 (478), STIM1B (540), and CAPN1 overexpression plasmids, we found s-STIM1 and c-STIM1, except in cells overexpressing s-STIM1 (478) that lacked CAPN1 target residues. These results and the in silico analysis, lead us to conclude that STIM1 is cleaved at Q496 by CAPN1. Ca2+ imaging analysis and coimmunoprecipitation assay using MEG01 and HEK293 cells overexpressing SARAF together with s-STIM1 (478) reported a reduced slow Ca2+-dependent inactivation, so reproducing the Ca2+-homeostasis pattern observed in neonatal platelets. CONCLUSIONS: CAPN1 may cleave STIM1 in neonatal platelets, hence, impairing SARAF coupling after SOCE activation. s-STIM1 may avoid slow Ca2+-dependent inactivation and, subsequently, results in an enhanced TG-evoked SOCE as observed in neonatal platelets.


Assuntos
Plaquetas , Calpaína , Proteínas de Membrana , Molécula 1 de Interação Estromal , Feminino , Humanos , Recém-Nascido , Plaquetas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calpaína/metabolismo , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
14.
Cell Rep ; 42(3): 112238, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36906853

RESUMO

Depletion of Ca2+ from the endoplasmic reticulum (ER) causes the ER Ca2+ sensor STIM1 to form membrane contact sites (MCSs) with the plasma membrane (PM). At the ER-PM MCS, STIM1 binds to Orai channels to induce cellular Ca2+ entry. The prevailing view of this sequential process is that STIM1 interacts with the PM and with Orai1 using two separate modules: a C-terminal polybasic domain (PBD) for the interaction with PM phosphoinositides and the STIM-Orai activation region (SOAR) for the interaction with Orai channels. Here, using electron and fluorescence microscopy and protein-lipid interaction assays, we show that oligomerization of the SOAR promotes direct interaction with PM phosphoinositides to trap STIM1 at ER-PM MCSs. The interaction depends on a cluster of conserved lysine residues within the SOAR and is co-regulated by the STIM1 coil-coiled 1 and inactivation domains. Collectively, our findings uncover a molecular mechanism for formation and regulation of ER-PM MCSs by STIM1.


Assuntos
Retículo Endoplasmático , Fosfatidilinositóis , Proteína ORAI1/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilinositóis/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
15.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834672

RESUMO

Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.


Assuntos
Canais de Cálcio , Células Endoteliais , Animais , Bovinos , Camundongos , Ratos , Humanos , Canais de Cálcio/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPC/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Sinalização do Cálcio/fisiologia
16.
Cell Mol Biol (Noisy-le-grand) ; 69(14): 232-236, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279426

RESUMO

Colon cancer is a complex malignancy characterized by intricate molecular interactions that influence its progression. This study investigates the role of calcium channel gene expression (ORAI1 and Piezo1) and their interplay with angiogenesis-related genes (VEGFA, CCL3, and NF-KB1) in colon cancer tissue biopsies. Additionally, we explore the mutation profiles of pivotal oncogenes (KRAS, PI3KCA, and BRAF) and their potential correlations with calcium channel and angiogenesis-related gene expression. The results indicate significant upregulation of ORAI1 and Piezo1, suggesting their involvement in colon cancer pathogenesis. Correlations between ORAI1 and VEGFA/CCL3 highlight potential crosstalk between calcium signaling and angiogenesis. The mutation analysis identifies prevalent oncogenic mutations, while intriguing connections between gene expression and oncogenic mutations emerge. Notably, mutant KRAS exon 2 samples exhibit elevated CCL3 and VEGFA expression, suggesting a nuanced link between specific KRAS mutations and the tumor microenvironment. These findings illuminate the intricate molecular landscape of colon cancer and emphasize the potential roles of calcium channels, angiogenesis-related genes, and oncogenic mutations as prognostic markers and therapeutic targets.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Canais Iônicos , Proteína ORAI1 , Humanos , Angiogênese , Biomarcadores Tumorais/genética , Biópsia , Canais de Cálcio/genética , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral/genética , Canais Iônicos/metabolismo , Proteína ORAI1/metabolismo
17.
Mol Cell Biol ; 42(11): e0017522, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317924

RESUMO

A-kinase anchoring protein 79 (AKAP79) is a human scaffolding protein that organizes Ca2+/calmodulin-dependent protein phosphatase calcineurin, calmodulin, cAMP-dependent protein kinase, protein kinase C, and the transcription factor nuclear factor of activated T cells (NFAT1) into a signalosome at the plasma membrane. Upon Ca2+ store depletion, AKAP79 interacts with the N-terminus of STIM1-gated Orai1 Ca2+ channels, enabling Ca2+ nanodomains to stimulate calcineurin. Calcineurin then dephosphorylates and activates NFAT1, which then translocates to the nucleus. A fundamental question is how signalosomes maintain long-term signaling when key effectors are released and therefore removed beyond the reach of the activating signal. Here, we show that the AKAP79-Orai1 interaction is considerably more transient than that of STIM1-Orai1. Free AKAP79, with calcineurin and NFAT1 in tow, is able to replace rapidly AKAP79 devoid of NFAT1 on Orai1, in the presence of continuous Ca2+ entry. We also show that Ca2+ nanodomains near Orai1 channels activate almost the entire cytosolic pool of NFAT1. Recycling of inactive NFAT1 from the cytoplasm to AKAP79 in the plasma membrane, coupled with the relatively weak interaction between AKAP79 and Orai1, maintain excitation-transcription coupling. By measuring rates for AKAP79-NFAT interaction, we formulate a mathematical model that simulates NFAT dynamics at the plasma membrane.


Assuntos
Proteínas de Ancoragem à Quinase A , Sinalização do Cálcio , Proteína ORAI1 , Molécula 1 de Interação Estromal , Humanos , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Calmodulina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo
18.
J Biol Chem ; 298(12): 102681, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356899

RESUMO

Stromal Interaction Molecule1 (STIM1) is an endoplasmic reticulum membrane-localized calcium (Ca2+) sensor that plays a critical role in the store-operated Ca2+ entry (SOCE) pathway. STIM1 regulates a variety of physiological processes and contributes to a plethora of pathophysiological conditions. Several disease states and enhanced biological phenomena are associated with increased STIM1 levels and activity. However, molecular mechanisms driving STIM1 expression remain largely unappreciated. We recently reported that STIM1 expression augments during pigmentation. Nonetheless, the molecular choreography regulating STIM1 expression in melanocytes is completely unexplored. Here, we characterized the molecular events that regulate STIM1 expression during pigmentation. We demonstrate that physiological melanogenic stimuli α-melanocyte stimulating hormone (αMSH) increases STIM1 mRNA and protein levels. Further, αMSH stimulates STIM1 promoter-driven luciferase activity, thereby suggesting transcriptional upregulation of STIM1. We show that downstream of αMSH, microphthalmia-associated transcription factor (MITF) drives STIM1 expression. By performing knockdown and overexpression studies, we corroborated that MITF regulates STIM1 expression and SOCE. Next, we conducted extensive bioinformatics analysis and identified MITF-binding sites on the STIM1 promoter. We validated significance of the MITF-binding sites in controlling STIM1 expression by performing ChIP and luciferase assays with truncated STIM1 promoters. Moreover, we confirmed MITF's role in regulating STIM1 expression and SOCE in primary human melanocytes. Importantly, analysis of publicly available datasets substantiates a positive correlation between STIM1 and MITF expression in sun-exposed tanned human skin, thereby highlighting physiological relevance of this regulation. Taken together, we have identified a novel physiologically relevant molecular pathway that transcriptionally enhances STIM1 expression.


Assuntos
Sinalização do Cálcio , Cálcio , Humanos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Fator de Transcrição Associado à Microftalmia/genética , Canais de Cálcio/metabolismo , Melanócitos/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteína ORAI1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
19.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291093

RESUMO

Calcium signalling in platelets through store operated Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) mechanisms is crucial for platelet activation and function. Orai1 proteins have been implicated in platelet's SOCE. In this study we evaluated the contribution of Orai1 proteins to these processes using washed platelets from adult mice from both genders with platelet-specific deletion of the Orai1 gene (Orai1flox/flox; Pf4-Cre termed as Orai1Plt-KO) since mice with ubiquitous Orai1 deficiency show early lethality. Platelet aggregation as well as Ca2+ entry and release were measured in vitro following stimulation with collagen, collagen related peptide (CRP), thromboxane A2 analogue U46619, thrombin, ADP and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin, respectively. SOCE and aggregation induced by Thapsigargin up to a concentration of 0.3 µM was abrogated in Orai1-deficient platelets. Receptor-operated Ca2+-entry and/or platelet aggregation induced by CRP, U46619 or thrombin were partially affected by Orai1 deletion depending on the gender. In contrast, ADP-, collagen- and CRP-induced aggregation was comparable in Orai1Plt-KO platelets and control cells over the entire concentration range. Our results reinforce the indispensability of Orai1 proteins for SOCE in murine platelets, contribute to understand its role in agonist-dependent signalling and emphasize the importance to analyse platelets from both genders.


Assuntos
Plaquetas , Cálcio , Proteína ORAI1 , Animais , Feminino , Masculino , Camundongos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Plaquetas/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Colágeno/metabolismo , Proteína ORAI1/metabolismo , Peptídeos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Trombina/farmacologia , Tromboxano A2/metabolismo
20.
Sci Adv ; 8(40): eabn6552, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206339

RESUMO

T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.


Assuntos
Canais de Cálcio , Vírus da Influenza A , Alérgenos , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Citocinas/metabolismo , Fatores de Transcrição E2F , Inflamação , Camundongos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA